
- /-

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE

No. 1429

TIIE EFFECTS OF YAWING THIN X)INTED

WINGS AT SUPERSONIC SPEEDS

By John C. Eward

Flight Propulsion Research Laboratory
Cleveland, Ohio

FORREFERENCE
W’T’TOBE TAKEN F+N3tfiTt+iS ROOM

d

=3!!! ~,~~ARy cop

Washington
September 1947

m
lANGLEYRYRiRci’cm

HAMPTON, VIRGINIA

.



.—

TECHNICAL 1!0733NO. 1429

.

—. —

THE EFIUXYTSOF YAWING THIN IKIINTED —

WINGS AT SUPERSONIC SPEEXS

suMlmRY
—

An spjy?oximat,erelation M derived for the surface velocity
potential of thin pointed.Wj.ngsat supersonic speeds when they are
contained within the Mach cone from the vertex. This relation is
applied to obtain the p~essure distributions, the lift and drag
coefficients,
a function of
are presented

the center of pressurej and th~ rolling moments &
angle of yaw for the delta wing. Theoretical curves
for a Mach number of @ to illustrate the relations. ‘-

INTRODUCTION

The linearized equation of compressible flow at supersonic
speeds has been applied by Stewart (reference 1) and Brown (refer-
ence 2) to obtain the l’dt distribution of a th-indelta wing with-
out yaw. Special cases of yawed delta wings have been solved by
Hayes of North Amerfc~ Aviation, inc. All these solutione are
simplified by the fact that the flow is conical. This simplifica-
tion is inapplicable if the leading edges are curved. —

.
A general method has been developed (the basic principle of

which is presented in reference 3) for obtaining the lift distri-
bution of thin wings of abitr~y plan fo~ ~d profile. Althou@
the method may be applied in principle to obtain the effectsof
yawing the thin pointed wing, the practical evaluation of the
integralsappearsto be dtificult even by numerical methods. Never-
theless, an approximate solution to the problem may be obtained
that will indicate the effects of the plan-form leading-edge curva-
ture and of yaw on the aerodynamic coefficj.entsof the wing.

.-

An approximate solutign for the surface velocity potential of
thin pofnted WIngS at supersonic speede when the leading edges are
included within the Mach cone from the vertex was developed during
March 1947 at the NACA Cleveland laboratory and is presented
herein. The solution is applied to calculate the pressure
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dlstribution, the center of presf3ure,and the wave lift and drag
coefficients of the delta wi~ as functions of yaw angle. 8

-1- --

ANALYSIS
+.:. ,.. = -,. :=4

The basis of the derivation for the surface velocity potential
is to replace the influence of the pointed wing and the-flow field
between the leading edge and the foremost Mach rives by-an.aPProfi-
mately equivalent wing surface without external disturbing flow
fields when the velocity potential at some local point on the wing
is calculated. The approxbatims that are applied will be
described in detail for the case of the delta wing.

When the leading edges of the delta wing are swept back along
the Mach lines (fig. l(a)), there is no external flow field repre-
sentin~;interactionbetween the top end bottom wing surfaces. The
correct values of the velocity potential.at any point on the top
wing swface may therefore be abtained through the methods of
reference 4 by an integration over the parallelo&rsm area ~
bounde~ by the leading e~e and the forward Mach cone from the
point (x,Y); that is

where .

P

u

G

-c

-=

.

(1)

—. ,-, : .-. .,---- ----
, ...- +: .

velocity potential at point (xjY) Oritop wing

.
tingleof attaci (neggtiiveflow-defiecti’on”angle on
top wing m.irface”in y = constant pti’e)--

---q
- .— .i.-.-. .:-. .. ... .—

.. :-.. +.-S

Cartesian coordinates

.-ml -.=— ~-, ,=.*
. —.—.

‘free-streamMach number
. :-. -a: .,=.—.- .—

(See references 3 or 4.) .,

..
“

-- .-.~-—
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IY the wing is swept behind the Mach cone fyom the yertax but
is so yawed that one of the leading edges coincides with the Mach
line (fig. l(b)), the veloctty potential will still be correctly “-- —

obtained by integrating equation (1) over the parallelogram area SW,O
deffned by the forward Mach lines from the point (xjy) @ the ~
wing leading edges.

According to the methods of reference 3, the contribution to
the potential at point (x,y) from the external flow field ~~ is

where qw,l is the

wing region Sv,l.

d~ dq \
- ~w,1

/(x-g)~ - P2(Y-1’12)“=

portion of the potential contributed by the

The external field ~ thus effectively c-an-
cels the influ=ce of the wing portion ~,1.

The case including yaw with both leading edges swept beh~d
the Mach cone from the vertex may now be considered. (See
fig. l(c).) !l!hepotential at point (x,y) is influenced by both
the ting eum?wes %(0+1+2+3) and the external fields off the

wing surfaces ~(l+2+3+4)@ The potential is then

IL

N AX-5)2 - r32(Y-Tl)2
. ...-.

%(0+1+2+3 )

u--
3-Crd‘D(I+2+3+4)

.
.

where A represents the slope of the
flow field near the x,y plane measured in q = conptant planes. -

--

By the methods of reference 3

Ad ( dq (2)

J(x-& - 132(Y-n)2

stream sheet in the external

.

.



*

,,

and

.

1[ M g al-j .

;li”JJ’D(2i&t4) ‘(x-~)’ - “(y-n)’

1“’r ?d~ d~ —=

J,
: J(X4)2 - 132(Y-?112

%m-pp)

SUb8titUti0n of equaticim (3) and (4) into equation

[[

J“%(2+3)

P

11 %(1+3)

(2) yields

ad d~

Ax-t)’ -!32(Y-V)2

(3)

Cuifdq
(4)

Jix-g’ -P’(y-q)z “

Because X end u have the sane si~ (reference 3), the seoond aud third integrals of
equaticm(5) tend to counteract each other. FoJ.’thermoreJaa the .weepbeckof the leadjngedges !a

~, o increaaes.

equation (5) may
the Ma& angle.
the ehmled area

approaches the Meh llneg fm the vertex, me ~~~ %~3 ~ 80(w4) approaohzem and
.*,.,,,,.

(The limiting case is ehovn in fig. l(a).) me s~hd ma third Intmgrak of .1:T:
F.

therefore be negleolmd, provmed that”the sweepback is not too much greater than
9

Within the validity of this apprmimatlon, the potentleL my be caloul.ateafrmn ~ ‘

%,0 (W. l(c)). .
r
N
a ....,

.

il!~,, . ..

.
. .

,.
.
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A comparison of the results thus far obtained shows tk.qttho ‘
ParallelOgr~ representation of the thin deita wing is exact iol;
the two limiting cases (fig, l(a) and fig.”l(b)), but is app~oxi-
mate for the general case [fig. l(c)).. The error In the ~?pr6x~-
mation is..likely tO be qeate~t for w~q+ swept congideratly behind
the Mach c~e from the ~~tex ~d for wings at zero angle of yaw.
me parallelogram approxti@ion my likewise le applied.when the
leading edges of the wing-we gently curved on the plan form,= in
figure 2.

. A

*

A set of oblique coordinates (u,v) having axes parallel to
the Mach waves simplifies the calculation of’the velocity poten-
tial. In this sytem one of the coordinates of a point is tlied.is-
tan.cemeasured parallel to the coor&lnate axis from the point to
the other coordinate axis. The transformation e~uations frcm .
Cartesf~ to oblique coordinates are

.

.

Inasmuch

tem is 3 au
~2

yields

u= $ (t-99)

v= $- (t+Pq)

E = & (V+u)

v = ; (v-u) (6)

as the elemental axea in the (u,v) coordinate sys-

dv, transformation of e~uation”(1) byrelatlo~ (6)

.-

U3J
CP

J(J

dl.1dv
‘Xl

SW,c1
(uW-u)(vW-v)

. (7) ‘-

where ~ and Vw are the oblique coordinates of the point (X,Y)=
Eguation (7) becomes (see fig. 2)

.

.
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..

dv—.

NE=
Vl(uw)

.,.
. ..” ~..r-- . ..’

. . .

4Ua
/[ —-VI (L@] [~ - U2(Vw)] -

‘zRvw-
(8)

In tho special case of the delta wing (fig. 3), the equations for
—

the leading edges are #.

v“= VI(U) = klu
..-. ..-=.—

and
. . -.. . .

u . ~(v) = kzv
.-

where kl and k2 are positive constants.
b

. ..— —

In this case, equation <0) becomes

/(
4Ua - -k v>vw-kl ~) (~ 2 W9=X

_..

= ~ /[x(l-kl) +@Y(l+kI)][x(l-k2) - 6Y(~k2)] (9)

(10)

Now the pressure Coefffcient

Cp=
—-.. .-. —

- —..—
where Ap is the local static pressure minus the freo-atirmm static
pressure and q is the ticomprgssibledynamic pr~ssure &J2 (P iD

density). Insertion of eguatlon (9) into equation (10) J-iolds

:?.
.. . . - , -.,.. ----

~l:_,:.,
.-

~+k2 ~
1 -~~
——’:— (11)

;: yl.t ——...—
-.1

.
.-.L.... .,--- . ..-.:.. -= >,-,-s=----,. - .-w-.-—-... :-...“.....“_—... ... .:, ..&:...:::_<.:.=

+
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By application of equations (6) and with the aid of figure 3,

7

(12)

,,.

t
where $ Is the-angle of yaw and 20 is the vertex argle of the
delta wing, Substitution of equation (12) into equation (11)
yields

r

L

ThIs equation indicate~ the pfiessuredistribution on t~”thin delta
wing swept behind the Mr,changle at angl#b of yaw. !& equat)ionis
exact M ten 0 or tan(Q*) or
greatest error should occur when ~e-~d ~G~!’P&e*e
accuracy of’tiieexpressich tncreases with mg~=75T yaw as long as
the wing lies wlthi~ the Mach cone from the vertex.

The case of $ . 0 has been solved exactly by the authors of
references 1 and 2. For ~ = O, the approximate equation (13)
reduces to

4
CP = X(

1)[1

-2U t’L e

&

~~;:~m?% = or
+p tan e

(1.4)
“2

2

\

The bracketed portion of equation (14) gives the same type varia-
tion of the pressure coefficient over the wing surface as was
obtained in references 1 and 2. 4The factor , how-

fi(l+~t~ e)
ever} is somewhat different. The uncorrected values of the factor .
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am compared with the true values.cf.the factor (obtained frcm the
expressione of reference 1 .gwdthe table of complmte ell.iptic

J_
.

inte~als E of the second kind with modulus l-~2t=2@} refer-
ence 5) fn the fol.lowlngtable:

. . ..— .
—...

@ tan e

1,00
.9
.%
.7
.6
5...
.4
.5
.2
.1

f).<
---—

Uncorrected
value of factor, F’

0.6366
,6701
.7074
● 7490
.7958
.%488
,9095

.9794
1.0610
1.1575
1.2732

:,.

True value of
factoz’,F

E(&2tsnd@
-—.

0.6366
.6697
.7052
.7432
.783-5
.8257
,8690
.9121
.9520
.9842

1..0000
-— —

Equation (14) (and.,consequentl.y,oquatfon (13)) thus appears
reasonnbI-y&ccurate, even when 9 tan 19 IS,ae low as 0,5.

In numerical calculations involvin~ equation (13), the
accuracy of the factor

-.

..* E..._ -

.—
—

(1s) “-“=fl&@tm(Q+;)zzLG-””’ “-

.

.-

may be improved by correction to give the true value at $ = 0.
The or:[ginal F’ and the estima.t~advalue of 1? are plotted
agai~!j ~’ andeforp= 1 (that is, M . fi) in flbwro 4.
In ~ractice, for small anglcm of yaw, F may be set equal to the
carrect value & 1)= O of

----- - -.
. —.

.-.

$

,, —.-..._

.——.—

.

-. — .—

.-..E ,-

-—.
.-

—
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(The exact value of the factor F has recen-tlybeen derived
by Max A. Eeaslet, Eamard Lomax, and Arthur L. Jones of tha ?W2A
Ames laboratory and is, in the notation of this paper, -.

~=~
I

II
2G

E Tal(e+w) + terl(e-$)]‘“

where E is the complete elliptic integral of the second kind with
r

modulus equal to _/1-G2 and

l+p2 tan(8+$) tan(~-$) -/ 11-p2 tan2((3+$)][1-~2 tan2(e-11)]G= —
p[tan(@W) + *an(@-V)] ‘

For pressure-distri.lxztionstudies, the pressure coefficient is
conveniently defined with respect to a-set o; coordinates fixed on
the wing. The pressure coefficient in terms of the wing coordinate
system (xl,yl) is derived in the appendix as equatfon (A3) and is

r
I

IItan2@ - tan%
cP =-@

l-tan28 t~2$

L

(16)

The wave lift coefficient CL of the yawed wing may be deter-
mined by integrating the pressure coefficient over the w-kg sur- -
face. This integration is performed in the appendix as equa-
tion (A5) to give

CL = 2Xd? tane

tan2e tan%

A comparison of equations (16) and (17) shows that the lift
coefficient is related to the pressure coefficient at the center of’
the wing through the equation -..
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“. %=+cp

where Cp is evaluated at yl = O. This relation does not

the cooffici.entF and hence is exact. Variations &Mach

—.

(18) ...=Y +.-.~c~
-.--

-contain

number,
angles otiattack and yaw, and vertex half-angle of the delta wing “
swept behind the Mach angle.do Rot alter the relation. A pimple .
experimental pressure measurement will thus give the lift coeffic-
ient c)fthe delta wing. By the principles of superposition; the
pressure coefficient of the thin delta wing may be obtained as one-
half the difference of the pressure coefficients on the top and
bottom surfaces of a symmetrical-profllofinite-thickness delta
wing of’the same plan form. The wave drag coefficient (neglecting
l,eadin&e,dgesuction) is u times the lift-coefficient or, with
the use of equation (17),is

T1..usboth the wave lift and the wave dra~ coefficients increase
with yaw (primarilybecause of the variation in F, fig. 3), as

~CLdoes .&.. It should be noted, however, that a is the f’low-

deflectlon angle of’attack of the yawed wing; the relation between
a and the angle a ~, which the delta wing (rotatod about its
base) makes with the plane of zero angle of attack, is

““a= (Z’Cosv (20) .

Inasmuch as the f’low is conical on the yawed delta win& the
center of pressure lies along a line parallel to the baae at a dls-

t~ce ~ xc (where xc is the ma&imum chord) from the vertex, As

shown in the a~pendix (equation (A1O)), the wing coordinak of the
center 5f pressqre ati”given &s

The center of pressure therefore lies .ona
the x axis gasa!r~through the midpotnt of

..
., .-. .

. r.—

—

-,a ,. ,.-

..

.,, . ----.—.

. ——

.
(22)

---- ... ... ...

line parallel to
the tralllqg edge.

;i
. .

.. .,. ..a

.

n- . ,! .--r* .-+-
A

k–z .. -—.

. .. .=

. ..—
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The geouetric location ot the”center of pressure is shown &
figure 5. Because the coefficient F cancels in tke calcu’.attti
of the center of pressure, the expressions obtained are exact. --

The rolling moment about the bisector of the vertex angle
(that is, yl = O) maybe obtained from equations (2i) and (17).

Ih terms of the maxjmum chord, the rolling-moment coefficient. ...C3
is

q tan .9tan$
C2.%CL= -*. ——

Jl - tan26 tan2~
(22)

The pitching moment about the axis ~ . $ xc is zero for .
all valu”esof yaw.

.

APPLIC&”IONS OF THWRY

In order to illustrate the effects of yaw; the pressure coef-
ficient on a thin delta wing of vertex half-angle ,tan-~ 0.4 at a
Mach number ?~ is presented in figure 6. In the cornputa$ions,
a corrected value of F (dotted curves of fig; 4) was used, The
pressure coefficient seems to remain nearlj constant along the
center llne and ap~roache~ @f@ity near ‘either\ec&ng edge, As
the angle of yaw is increased>

—
the pressures on the least-swept

side of the wing increaGe whereas Vue pressures,on the most-swept
side decrease. For the Case $= e, the pressure coefficient.on
the most-swept leading edge (90° sweepback) -becomesO. (See
equation (16).) For greater angies of yaw, the pressure coeffi-
cient is negative over a portion of the wing surface. (The solu-
tion obtained when the sweepbe.ckof one of the leading edges is ..

greater than 90° does not conform to tineKutta-Joukowski condi-
tion for so-called subsonic trailing edges. For this reason, the
* = 23.2° curve is.dashed.)

Corresponding to the shift in the premure distribution (and
center of pressure), a change tn the lift and drag coefficients
occurs. (See equations (17), (18), and (19).) The variation of ‘-
the lift-curve slopes aCL/& and ?XL/b’ are presented in
figure 7. In terms of the flow-deflection angle of attack u,
the lift-curve slope increases with angle of yaw. In terms of the.
geometric angle of attack a’ (t&wing considered tobe ro~a~ed _ .
about-its base), the lift-curve slope decreases with angle of yaw,
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The rolling-moment coefficients of-the wing about the bfeector
of the vertex half-angle are presented as a function of ~gle of
yaw in figurq 8, Theee coef$icigmta were.calculated from equa-
tions (23) and (22) for M . @ and 6 = tan-~ 0.4. The rolling-
motnentcoefficient is seen to be proportional to the angle of
attack ara i.snearly proportional to the angle of
side~-ablsrol~ing moment--developsat large angles

An analyais
fined wft,hinthe
Yesults:

1. Yawing a
such a manner as

.,

REi5’ULTSOF ANALYSIS

yaw , A oon-
of yaw.

.. . .

of the yawed delta wmg at supersonic speeds con-
Mach cone from the vertex gave the following

delta wing shifts the pressure distribution in
to increase the magnl.tudeofithe pressure coef-

ficient on the least-swept side of the wing and decrease the pres-
sure coefficient on the most-swept side of the wing.

2. The center of pre%sure of the yawed delta wing lies along
a line parallel to the free-stream direction passing through the
center of the delta base and at a “distancetwo-thirds m? the maxi-
mum chord from the vertex. A considerable rolling moment may
therefora be experienced at large angles of yaw.

3. The lift-curve slope of the delta wing generally depends
on the Mach number, the angle of sweepback, and the an@e. of yay.
The lift-curve slope of a delta wing of semi.-vertexan~le
tan-l 0.4 at a Mach number of n either increesos or decrf3S.SeO
with angle of’yaw, depending upon whether “theflow-deflection
angle of,attaok or the geometric mgle of attack is_..us@;.we
ratio of the two lift-curve slopes is the cosine of the yaw angle-,

4. The absolute value of the ratio of ltft--coefficl.en~to
yessure coefficient at the centerof the yawed thin flat-plate
delta wing is found to be YC,

Flight Propulsion Reseaqch Laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio, July 10, 1947.
,.
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APP~DIX - CALCUZM’1ON OF AERODYNAMIC

YAWED DELTA WING

A set of Cartesian coordinates (X1,Y1)

13

COEEV?ICImTs 03’ -
$

defIued on the wing
surface iEI convenient for calculati~ the Ifit coefficient of the
thin delta wing. The trenefomnation equations are --

(Al)

The quantity y/x then becomes

Yl
— - tanlj

Y
xl ,

—=
xv

Q tan$+ 1
‘1

The pressure coefficient, equation (13), then becomes

r

L

(M)

(M)

Because the flow is oonical, the lift may be evaluated by using a
.. . XC%Y1

triangular infinitestil ar~a dS . +9 where xc is the maxi-

mum chord. The coordinates
in the following sketch:

G

and the infinitesimal area are shown
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,

-. . ... .-. _

—x —. ..—.-=
., :=:* .:&_

.— . .. .._= _—_
-.—

given & —.
. ..

-—
...—

-.-——

. .
-i, .

.—

r

J -C7pxodyl
-xc tane

J

tane
= 1= --

2 t~e
tane

xc -tane
.(K~1)Cp d--, (A4)

=J
1-

Jds
Substitution of c~from equation (A3) into (A4) and
by formulas 111 an 113 of reference 6 yields

.

~ .-.=-
.—~.

. . . .-.

. -.
---..>!C. &—.—,,:+

..—->.-

. . - ..-s
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CL =
2YraFtane

J–l-tan20 tan2$

provftled that

The center of pressure (~,” Z)
2

chord or ~ = ~ xc from the vertex,

(A5)

.. -.—

~.
P

—

will lie along the mean

The other coordinate of th~ ‘“ .

center of pressure may be obtained from an evaluation
expression.

-.

of the
t

-. ,-

(A6)
. —

The h.teg#al in the numerator may-be evaluated by equations 112,
113, and 172 of reference 6 to give (for the cas6 w < 0)

+-

+ ( 1
tane+tan$)

-1

,.
(A7). .
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The integral of the denominator may be evaluated by fo~~>w Ill
and 113 of referimce6 to-give

... ,. ..

. . m..

-..

Therefore,

(A9)

.

(A Bimiler derivatin, with due rega~ to the E%n of the radical)
showe that equation (A9) also applies when ~>e provided that..- .
the pressure coefficientMay be represented by equation (A3),) The
coordinates of the center of pressure are then

‘c
q= J- ~tan$

. —....
.=
.
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(b) Wln so yawed that one leadln ed e colncldes with
!?Mach ine v = O and wlti other feadfng edge swept

behind Mach line u = O.
Figure 1. - Parallelogram representation of delta wing.
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(C) Yawed W@ with both leadlng edges swept behind Mach llne.

Figure 1. - concluded. Paral Ielogram representation of delta wing.
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Figure 2. - Field of integration for paral Ielogram representation of the

. pointed wing with curved leading edges.
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Figure 3. - Field of integration for paral Ielog ram repreSentati Ofl Of
delta wing.
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NACA TN No. 1429 Fig. 4
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Figure 5. - Location of center of

.

pressure un yawed delta wing.

●

,.- . . .-—=....” -. -. ..—
-.. —

: ;-s ..~
.—. .-. --~

“.: :. -.: —--

.—. -

. ..—-..
.. ..=

—..-—.--— .— . -_., .._
. ..-. -.L -

--- .+. * —



L NACA TN No. 1429 Fig. 6
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;ure 6. - Pressure distribution on delta wing at several angle s. of-
for Mach number = Anqle of attack Q measured in radians.
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7. -“variation of lift coefficient
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CL and wave drag coefficient —Figure

CD with angle of yaw y for Mach number %. Angle of attack a

measured in radians.

. .

.

.-.:.. ..—
— —



1.

.A

t

NACA TN No. I429 Fig. 8

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

u

.3 \ ‘/

~ p,

CJla

/

// / \
/

/ r

/
\ “ ~\a’

\
/

/

.1 — — —

bcz
c#af = ~

a = at cos ~

/

o
0 4 8 16 20 24

Angle of yaw, *?, deg

Figure 8. - Variation of rol Ii”ng moment Cf with angie o? yaw qJ fo r.
Mach number *. Angle of attack ~ measured in radians.
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